风海网 > 生活 > 正文

​虚数公式(虚数公式法)

2024-01-12 13:30 来源:风海网 点击:

虚数公式(虚数公式法)

高中数学虚数i的运算

1、i的三次方为-i。

2、i的四次方位1。

3、i的五次方为i。

虚数i的运算公式:(a+bi)±(c+di)=(a±c)+(b±d)i

(a+bi)(c+di)=(ac-bd)+(ad+bc)i

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)

r1(isina+cosa)r2(isinb+cosb)=r1r2[cos(a+b)+isin(a+b)]

其中a,b是实数,且b≠0,i²=-1。

虚数i的三角函数公式:

1、sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)

2、cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)

3、tan(a+bi)=sin(a+bi)/cos(a+bi)

4、cot(a+bi)=cos(a+bi)/sin(a+bi)

5、sec(a+bi)=1/cos(a+bi)

6、csc(a+bi)=1/sin(a+bi)

虚数的公式,运算规则? 尽可能多吧.

(a+bi)*(c+di)

=ac+adi+bci+bd*i^2

=(ac-bd)+(ad+bc)i

(a+bi)÷(c+di)

=(a+bi)(c-di)÷[(c+di)(c-di)]

=(ac-adi+bci-bdi^2)÷(c^2-d^2i^2)

=[(ac+bd)+(bc-ad)i]/(c^2+d^2)

在数学里,将平方是负数的数定义为纯虚数.所有的虚数都是复数.这种数有一个专门的符号“i”(imaginary),它称为虚数单位.定义为i^2=-1.但是虚数是没有算术根这一说的,所以√(-1)=±i.对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA.

一个数的ni次方为:

x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).

一个数的ni次方根为:

x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).

以i为底的对数为:

log_i(x) = 2 ln(x)/ i*pi.

i的余弦是一个实数:

cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.

i的正弦是虚数:

sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.

i,e,π,0和1的奇妙关系:

e^(i*π)+1=0

虚数i的运算公式

虚数i的运算公式:(a+bi)±(c+di)=(a±c)+(b±d)i。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i²=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。

虚数i的运算公式大全

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i²=-1。接下来给大家分享虚数i的运算公式。

虚数i的四则运算公式

(a+bi)±(c+di)=(a±c)+(b±d)i

(a+bi)(c+di)=(ac-bd)+(ad+bc)i

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)

r1(isina+cosa)r2(isinb+cosb)=r1r2[cos(a+b)+isin(a+b)]

r1(isina+cosa)/r2(isinb+cosb)=r1/r2[cos(a-b)+isin(a-b)]

r(isina+cosa)n=(isinna+cosna)

虚数i的三角函数公式

sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)

cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)

tan(a+bi)=sin(a+bi)/cos(a+bi)

cot(a+bi)=cos(a+bi)/sin(a+bi)

sec(a+bi)=1/cos(a+bi)

csc(a+bi)=1/sin(a+bi)

虚数i的性质

(1)i的高次方会不断作以下的循环:

i 1 =i,i 2 =-1,i 3 =-i,

i 4 =1,i 5 =i,i 6 =-1...

(2)i n 具有周期性,且最小正周期是4.

∴i 4n =1,i 4n+1 =i,i 4n+2 =-1,i 4n+3 =-i.

(3)由于虚数特殊的运算规则,出现了符号i

当ω=-1/2+(√3)/2i或ω=-1/2-(√3)/2i时:

ω2+ω+1=0    ω3=1

虚数的实际意义及运算公式

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i²=-1。接下来给大家分享虚数的实际意义和运算公式。

虚数的实际意义

一切事物的值都可表示为:a+bi,而不是单有实数。

我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。在此时,一点P坐标为P(a,bi),将坐标乘上i即点绕圆心逆时针旋转90度。

不能满足于上述图像解释的同学或学者可参考以下题目和说明:

若存在一个数,它的倒数等于它的相反数(或者它的倒数的相反数为其自身),这个数是什么形式?

根据这一要求,可以给出如下方程:-x=(1/x)。

不难得知,这个方程的解x=±i(虚数单位)

由此,若有代数式t'=ti,我们将i理解为从t的单位到t'的单位之间的转换单位,则t'=ti将被理解为

-t'=1/t,即t'=-1/t。

这一表达式在几何空间上的意义不大,但若配合狭义相对论,在时间上理解,则可以解释若相对运动速度可以大于光速c,相对时间间隔产生的虚数值,实质上是其实数值的负倒数。也就是所谓回到过去的时间间隔数值可以由此计算出来。

虚数成为微晶片和数字压缩算法设计中的核心工具,虚数是引发电子学革命的量子力学的理论基础。

虚数是用来表示事物中无法构成抽象概念的因素的抽象概念。

虚数i的运算公式

虚数i的四则运算公式

(a+bi)±(c+di)=(a±c)+(b±d)i

(a+bi)(c+di)=(ac-bd)+(ad+bc)i

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)

r1(isina+cosa)r2(isinb+cosb)=r1r2[cos(a+b)+isin(a+b)]

r1(isina+cosa)/r2(isinb+cosb)=r1/r2[cos(a-b)+isin(a-b)]

r(isina+cosa)n=(isinna+cosna)

虚数i的三角函数公式

sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)

cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)

tan(a+bi)=sin(a+bi)/cos(a+bi)

cot(a+bi)=cos(a+bi)/sin(a+bi)

sec(a+bi)=1/cos(a+bi)

csc(a+bi)=1/sin(a+bi)

虚数公式